A hall-room 39 m 10 cm long and 35 m 70 cm broad is to be covered with equal square tiles. Find the largest tile so that the tiles exactly fit and also find no. of tiles required.

Solution:

Length of the room:

$$
39 \mathrm{~m} 10 \mathrm{~cm}=39 \cdot 100+10=3910 \mathrm{~cm}
$$

Width of the room:

$$
35 \mathrm{~m} 70 \mathrm{~cm}=35 \cdot 100+70=3570 \mathrm{~cm}
$$

Now we can factor the distances (length and width):

$$
\begin{aligned}
& 3910=2 \cdot 5 \cdot 17 \cdot 23 \\
& 3570=2 \cdot 3 \cdot 5 \cdot 7 \cdot 17
\end{aligned}
$$

GCF of the length and width is:

$$
\operatorname{GCF}(3910,3570)=2 \cdot 5 \cdot 17=170 \mathrm{~cm}
$$

Hence, the side of the tile is equal to 170 cm , so the area of one tile is

$$
S_{\text {tile }}=(170 \mathrm{~cm})^{2}=28900 \mathrm{~cm}^{2}
$$

The area of the room:

$$
S_{\text {room }}=3910 \cdot 3570=13958700 \mathrm{~cm}^{2}
$$

Number of tiles:

$$
\mathrm{N}=\frac{\mathrm{S}_{\text {room }}}{\mathrm{S}_{\text {tile }}}=\frac{13958700}{28900}=483 \text { tiles }
$$

Answer: side of the tile is 170 cm , number of tiles: 483.

