A cone has a radius of 4 and a height of 8. The smaller cone is 1/8 of the bigger cones volume. What are the dimensions of the smaller cone?

Solution:

We have

$$V_b = \frac{1}{3}\pi R_b^2 h_b$$

where V_b , R_b , h_b is the volume, radius and height of the bigger cone. Because $R_b = 4$ and $h_b = 8$ then

$$\frac{h_b}{R_b} = \frac{8}{4} = 2 \Rightarrow h_b = 2R_b.$$

Thus

$$V_b = \frac{1}{3}\pi R_b^2 \cdot 2R_b,$$
$$V_b = \frac{2}{3}\pi R_b^3.$$

Denote V_s , R_s , h_s is the volume, radius and height of the smaller cone. So

$$h_s = 2R_s, V_s = \frac{2}{3}\pi R_s^3.$$

Thus we have

$$\frac{V_s}{V_b} = \frac{\frac{2}{3}\pi R_s^3}{\frac{2}{3}\pi R_b^3} = \frac{1}{8},$$
$$\frac{R_s^3}{R_b^3} = \frac{1}{8},$$
$$\left(\frac{R_s}{R_b}\right)^3 = \left(\frac{1}{2}\right)^3,$$
$$\frac{R_s}{R_b} = \frac{1}{2},$$
$$R_s = \frac{1}{2}R_b = \frac{1}{2} \cdot 4 = 2.$$

Also

 $h_s = 2R_s = 4.$

Answer: $R_s = 2$, $h_s = 4$.