A cone has a radius of 4 and a height of 8 . The smaller cone is $1 / 8$ of the bigger cones volume. What are the dimensions of the smaller cone?

Solution:

We have

$$
V_{b}=\frac{1}{3} \pi R_{b}^{2} h_{b}
$$

where V_{b}, R_{b}, h_{b} is the volume, radius and height of the bigger cone. Because $R_{b}=4$ and $h_{b}=8$ then

$$
\frac{h_{b}}{R_{b}}=\frac{8}{4}=2 \Rightarrow h_{b}=2 R_{b}
$$

Thus

$$
\begin{gathered}
V_{b}=\frac{1}{3} \pi R_{b}^{2} \cdot 2 R_{b} \\
V_{b}=\frac{2}{3} \pi R_{b}^{3}
\end{gathered}
$$

Denote V_{s}, R_{s}, h_{s} is the volume, radius and height of the smaller cone. So

$$
h_{s}=2 R_{s}, V_{s}=\frac{2}{3} \pi R_{s}^{3}
$$

Thus we have

$$
\begin{gathered}
\frac{V_{s}}{V_{b}}=\frac{\frac{2}{3} \pi R_{s}^{3}}{\frac{2}{3} \pi R_{b}^{3}}=\frac{1}{8} \\
\frac{R_{s}^{3}}{R_{b}^{3}}=\frac{1}{8} \\
\left(\frac{R_{s}}{R_{b}}\right)^{3}=\left(\frac{1}{2}\right)^{3}, \\
\frac{R_{s}}{R_{b}}=\frac{1}{2} \\
R_{s}=\frac{1}{2} R_{b}=\frac{1}{2} \cdot 4=2 .
\end{gathered}
$$

Also

$$
h_{s}=2 R_{s}=4
$$

Answer: $R_{s}=2, h_{s}=4$.

