Task

Given that $P(h, k)$ is a point equidistant from the points $A(3,5)$ and $B(7,-1)$, prove that $3 k-2 h+4=0$

Solution

As it is given, $P A=P B$, so we can find squares of lengths and then equate them:
$A B^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$ - general formula of the square of the distance between points $\mathrm{A}\left(x_{1} ; y_{1}\right)$ and $B\left(x_{2} ; y_{2}\right)$.

In this case:

$$
\begin{aligned}
& \quad P A^{2}=(h-3)^{2}+(k-5)^{2} \\
& P B^{2}=(h-7)^{2}+(k+1)^{2} \\
& \text { Since } P A=P B \text {, so } P A^{2}=P B^{2} ; \\
& (h-7)^{2}+(k+1)^{2}=(h-3)^{2}+(k-5)^{2} \\
& h^{2}-6 h+9+k^{2}-10 k+25=h^{2}-14 h+49+k^{2}+2 k+1 \\
& 12 k-8 h+16=0 /: 4 \\
& 3 k-2 h+4=0
\end{aligned}
$$

Answer

Proved: $3 k-2 h+4=0$

