Solve the system of differential equations $\mathrm{dy} / \mathrm{dx}=\mathrm{xz}+1, \mathrm{dz} / \mathrm{dx}=-\mathrm{xy}$ for $\mathrm{x}=0.3$ using 4th order R-K method with $\mathrm{y}(0)=0, \mathrm{z}(0)=1$.

Solution:

Suppose we have next problem
$\frac{d y}{d x}=f(z, x), \quad y\left(x_{0}\right)=y_{0}$.
Then steps of 4th order R-K method are next
$y_{n+1}=y_{n}+\frac{1}{6} h\left(k_{1}+k_{2}+k_{3}+k_{4}\right)$,
$x_{n+1}=x_{n}+h$,
where
$k_{1}=f\left(z_{n}, x_{n}\right)$,
$k_{2}=f\left(z_{n}+\frac{1}{2} h, x_{n}+\frac{h}{2} k_{1}\right)$,
$k_{3}=f\left(z_{n}+\frac{1}{2} h_{,} x_{n}+\frac{h}{2} k_{2}\right)$,
$k_{4}=f\left(z_{n}+h, x_{n}+h k_{3}\right)$.
In our case $x_{0}=0, y_{0}=0, z_{0}=1, h=0.3$. Then we have
$y_{1}=y_{0}+\frac{1}{6} h\left(k_{1}^{(y)}+k_{2}^{(y)}+k_{3}^{(y)}+k_{4}^{(y)}\right) ;$
$z_{1}=z_{0}+\frac{1}{6} h\left(k_{1}^{(z)}+k_{2}^{(z)}+k_{3}^{(z)}+k_{4}^{(z)}\right) ;$
$k_{1}^{(y)}=f^{(y)}\left(z_{0}, x_{0}\right)=x_{0} z_{0}+1=1 ;$
$k_{1}^{(z)}=f^{(z)}\left(y_{0}, x_{0}\right)=-x_{0} y_{0}=0 ;$
$k_{2}^{(y)}=f^{(y)}\left(z_{0}+\frac{1}{2} h, x_{0}+\frac{h}{2} k_{1}^{(y)}\right)=\left(x_{0}+\frac{h}{2} k_{1}^{(y)}\right)\left(z_{0}+\frac{1}{2} h\right)+1=$
$=\left(0+\frac{0.3}{2}\right)\left(1+\frac{0.3}{2}\right)+1=1.1725$;
$k_{2}^{(z)}=f^{(z)}\left(y_{0}+\frac{1}{2} h, x_{0}+\frac{h}{2} k_{1}^{(z)}\right)=-\left(x_{0}+\frac{h}{2} k_{1}^{(z)}\right)\left(y_{0}+\frac{1}{2} h\right)=$
$=-(0+0)\left(0+\frac{0.3}{2}\right)=0$;
$k_{3}^{(y)}=f^{(y)}\left(z_{0}+\frac{1}{2} h, x_{0}+\frac{h}{2} k_{2}^{(y)}\right)=\left(x_{0}+\frac{h}{2} k_{2}^{(y)}\right)\left(z_{0}+\frac{1}{2} h\right)+1=$
$=\left(0+\frac{0.3}{2} \cdot 1.1725\right)\left(1+\frac{0.3}{2}\right)+1=1.20225625$;
$k_{3}^{(z)}=f^{(z)}\left(y_{0}+\frac{1}{2} h, x_{0}+\frac{h}{2} k_{2}^{(z)}\right)=-\left(x_{0}+\frac{h}{2} k_{2}^{(z)}\right)\left(y_{0}+\frac{1}{2} h\right)=$
$=-(0+0)\left(0+\frac{0.3}{2}\right)=0$;
$k_{4}^{(y)}=f^{(y)}\left(z_{0}+h, x_{0}+h k_{3}^{(y)}\right)=\left(z_{0}+h\right)\left(x_{0}+h k_{3}^{(y)}\right)+1=$
$=(1+0.3)(0+0.3 \cdot 1.20225625)+1=1.468879938 ;$
$k_{4}^{(z)}=f^{(z)}\left(y_{0}+h, x_{0}+h k_{3}^{(z)}\right)=-\left(y_{0}+h\right)\left(x_{0}+h k_{3}^{(z)}\right)=$
$=-(0+0.3)(0+0.3 \cdot 0)=0$.
Thus we have
$y_{1}=y_{0}+\frac{1}{6} h\left(k_{1}^{(y)}+k_{2}^{(y)}+k_{3}^{(y)}+k_{4}^{(y)}\right)=$
$=0+\frac{0.3}{6}(1+1.1725+1.20225625+1.468879938)=0.242181809 ;$
$z_{1}=z_{0}+\frac{1}{6} h\left(k_{1}^{(z)}+k_{2}^{(z)}+k_{3}^{(z)}+k_{4}^{(z)}\right)=1+\frac{0.3}{6} \times$
$\times(0+0+0+0)=1$.

Answer:

$\left.y\right|_{x=0.3}=0.242181809$
$\left.z\right|_{x=0.3}=1$

