Answer on question 36529 - Math - Probability and Statistics

One sample has a mean of $M 1=4$ and a second sample has a mean of $M 2=8$. The two samples are combined into a single set of scores.

What is the mean for the combined set if both of the original samples have $\mathrm{n}=7$ scores?
What is the mean for the combined set if the first sample has $\mathrm{n}=3$ and the second sample has $\mathrm{n}=7$?
What is the mean for the combined set if the first sample has $\mathrm{n}=7$ and the second sample has $\mathrm{n}=3$?

Solution

Let we have a samples $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{m}$ than the mean is $M 1=\frac{x_{1}+x_{2}+\cdots+x_{_} n}{n}$ and $M 2=\frac{y_{1}+y_{2}+\cdots+y_{m}}{m}$.
the mean for the combined set is

$$
M=\frac{x_{1}+\cdots+x_{n}+y_{1}+\cdots+y_{m}}{m+n}
$$

If $\mathrm{n}=\mathrm{m}=7$ we get

$$
M=\frac{x_{1}+\cdots+x_{7}+y_{1}+\cdots+y_{7}}{14}=\frac{x_{1}+x_{2}+\cdots+x_{7}}{14}+\frac{y_{1}+y_{2}+\cdots+y_{7}}{14}=\frac{M 1}{2}+\frac{M 2}{2}=2+4=6
$$

If $n=3$ and $m=7$, we get

$$
M=\frac{x_{1}+x_{2}+x_{3}+y_{1}+\cdots+y_{7}}{10}=\frac{3 M 1+7 M 2}{10}=\frac{12+56}{10}=6.8 .
$$

If $n=7$ and $n=3$, we get

$$
M=\frac{x_{1}+\cdots+x_{7}+y_{1}+\cdots+y_{3}}{10}=\frac{7 M 1+3 M 2}{10}=\frac{28+24}{10}=5.2 .
$$

Answer: 6; 6.8; 5.2.

