Question

$\left(1+x+x^{\wedge} 2+\ldots . ..\right)\left(1+x^{\wedge} 2+x^{\wedge} 4+\ldots . ..\right)\left(1+x^{\wedge} 3+x^{\wedge} 6 \ldots . ..\right)$ in this case what is the coefficient of $x^{\wedge} 6$?

Solution

Writing all summands explicitly up to the 6th power we rewrite this expression

$$
\begin{gathered}
w=\left(1+x+x^{2}+\cdots\right)\left(1+x^{2}+x^{4}+\cdots\right)\left(1+x^{3}+x^{6}+\cdots\right)= \\
=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6} \ldots\right)\left(1+x^{2}+x^{4}+x^{6} \ldots\right)\left(1+x^{3}+x^{6}+\cdots\right)
\end{gathered}
$$

The product of the two last multipliers is equal to

$$
\left(1+x^{2}+x^{4}+x^{6} \ldots\right)\left(1+x^{3}+x^{6}+\cdots\right)=\left(1+x^{2}+x^{3}+x^{4}+x^{5}+2 x^{6}+\cdots\right)
$$

The substitution of this product in the previous expression, multiplication of the two multipliers and the cancellation give the sought coefficient

$$
\begin{gathered}
w=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6} \ldots\right)\left(1+x^{2}+x^{3}+x^{4}+x^{5}+2 x^{6} \ldots\right)= \\
=1+x+A_{2} x^{2}+A_{3} x^{3}+A_{4} x^{4}+A_{5} x^{5}+7 x^{6} \ldots
\end{gathered}
$$

where $A_{2}, A_{3}, A_{4}, A_{5}$ are some numerical coefficients.
Thus the coefficient of x^{6} is equal to 7 .

Answer:

It is 7.

