Question: The percentage of American men who say they would marry the same woman if they had to do it over again is 65% what is the probability that in a group of 10 married American men, no more than 3 will claim that they would marry the same woman again? what is a probability that at least 6 will say this?
Solution: Event A: "randomly chosen men belongs to a group of men that would marry the same woman if they had to do it over again". $\mathrm{P}(\mathrm{A})=0.65$.
Let X be a random variable of the number of successes in a sequence of 10 independent experiments, where success probability is $P(A)=0.65$. X follows the binomial distribution with parameters $\mathrm{n}=10, \mathrm{p}=0.65 . \mathrm{P}(\mathrm{X}=\mathrm{k})=\binom{n}{k} p^{k}(1-p)^{n-k}=\binom{10}{k} 0.65^{k} 0.35^{10-k}$ for $\mathrm{k}=0,1, \ldots, 10$.

- The probability that in a group of 10 married American men, no more than 3 will claim that they would marry the same woman again is

$$
\begin{aligned}
& P(X \leq 3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=\binom{10}{0} 0.65^{0} 0.35^{10}+\binom{10}{1} 0.65^{1} 0.35^{9}+ \\
& \binom{10}{2} 0.65^{2} 0.35^{8}+\binom{10}{3} 0.65^{3} 0.35^{7}=0.35^{7}\left(0.35^{3}+10 * 0.65 * 0.35^{2}+45 * 0.65^{2} *\right. \\
& \left.0.35+120 * 0.65^{3}\right)=0.35^{7} * 40.4485 \approx 0.026 .
\end{aligned}
$$

- The probability that at least 6 will say this:

$$
\begin{aligned}
& P(X \geq 6)=1-P(X \leq 5)=1-(P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5))=1- \\
& \left(0.35^{7} * 40.4485+P(X=4)+P(X=5)\right)=1-0.35^{7} * 40.4485-\binom{10}{4} 0.65^{4} 0.35^{6}- \\
& \binom{10}{5} 0.65^{5} 0.35^{5}=1-0.35^{7} * 40.4485-0.65^{4} 0.35^{4}\left(210 * 0.35^{2}+252 * 0.65 * 0.35\right)= \\
& 1-0.35^{7} * 40.4485-0.65^{4} 0.35^{4} * 83.055 \approx 0.751 .
\end{aligned}
$$

Answer: The probability that in a group of 10 married American men, no more than 3 will claim that they would marry the same woman again is ≈ 0.026.
The probability that at least 6 will say this is ≈ 0.751.

