

In $\triangle ABC$, $m(\angle A) = 35$ and $m(\angle C) = 77$. What is the longest side of the triangle?

Solution:

Using Apollonius' theorem we have:

$$a = \frac{2}{3} \sqrt{-m_a^2 + 2m_b^2 + 2m_c^2} = \frac{2}{3} \sqrt{2m_b^2 + 10633} \quad (1)$$

$$b = \frac{2}{3} \sqrt{-m_b^2 + 2m_a^2 + 2m_c^2} = \frac{2}{3} \sqrt{-m_b^2 + 14308} \quad (2)$$

$$c = \frac{2}{3} \sqrt{-m_c^2 + 2m_b^2 + 2m_a^2} = \frac{2}{3} \sqrt{2m_b^2 - 9408} \quad (3)$$

$$(1), (3) \rightarrow a > c$$

Median $m(\angle C)$ is more than twice greater than median $m(\angle A)$. So, $m(\angle A) < m(\angle B) < m(\angle C)$ (Otherwise triangle doesn't exist).

Using it we have $a > b$ and $b > c$

So, $a > b > c \rightarrow a$ is the longest side.

Answer: a is the longest side.