the displacement of a boat relative to water is represented by $(3 t) i+4(t 2-1) j(r e a d$ as 4 (t square$1) j$) and that of water relative to ground is i-(et)j (read as i-(e power t)j). what is the velocity of the boat relative to ground if i\&j represent $1 \mathrm{~km} /$ hour east and north respectively?

Solution

The displacement of a boat relative to water $\overrightarrow{d_{1}}$ is represented by

$$
\overrightarrow{d_{1}}=(3 \mathrm{t}) \mathrm{i}+4\left(\mathrm{t}^{2}-1\right) \mathrm{j}
$$

The displacement of water relative to ground $\overrightarrow{d_{2}}$ is represented by

$$
\overrightarrow{d_{2}}=\mathrm{i}-\left(\mathrm{e}^{\mathrm{t}}\right) \mathrm{j} .
$$

The displacement of a boat relative to ground $\overrightarrow{d_{3}}$ is the sum of displacements of a boat relative to water $\overrightarrow{d_{1}}$ and that of water relative to ground $\overrightarrow{d_{2}}$:

$$
\overrightarrow{d_{3}}=\overrightarrow{d_{1}}+\overrightarrow{d_{2}}=\left((3 \mathrm{t}) \mathrm{i}+4\left(\mathrm{t}^{2}-1\right) \mathrm{j}\right)+\left(\mathrm{i}-\left(\mathrm{e}^{\mathrm{t}}\right) \mathrm{j}\right)=(3 t+1) \mathrm{i}+\left(4\left(\mathrm{t}^{2}-1\right)-\mathrm{e}^{\mathrm{t}}\right) \mathrm{j}
$$

The velocity of the boat relative to ground

$$
\vec{v}=\frac{d}{d t} \overrightarrow{d_{3}}=i \frac{d}{d t}(3 t+1)+j \frac{d}{d t}\left(4\left(\mathrm{t}^{2}-1\right)-\mathrm{e}^{\mathrm{t}}\right)
$$

Let's find components of the velocity due east and north:

$$
\begin{gathered}
v_{\text {east }}=\frac{d}{d t}(3 t+1)=3 \frac{\mathrm{~km}}{\mathrm{~h}} \\
v_{\text {north }}=\frac{d}{d t}\left(4\left(\mathrm{t}^{2}-1\right)-\mathrm{e}^{\mathrm{t}}\right)=\left(8 t-e^{t}\right) \frac{\mathrm{km}}{\mathrm{~h}}
\end{gathered}
$$

Answer: $3 \frac{\mathrm{~km}}{\mathrm{~h}}$ east and $\left(8 t-e^{t}\right) \frac{\mathrm{km}}{\mathrm{h}}$ north.

