Please show that the vector a is orthogonal to the hyperplane $H = H(a, \epsilon)$; that is, if u and v are in H, then a is orthogonal to u - v.

Solution.

We present an example to illustrate this statement.

If the vector \vec{a} is orthogonal to the H, then \vec{a} is a normal vector for H. Let $\vec{a} = (2,3)$ and H is a straight line with equation

$$2x + 3y = 1$$

Find points on *H*. Suppose point (x; y) lies on *H*. We note that when x = 2, y = -1, so $\vec{u} = (2, -1)$ lies on *H*. Thus,

$$(2,3) \cdot ((x,y) - (2,-1)) = 0,$$

or, equivalently,

$$(2,3) \cdot (x-2, y+1) = 0,$$

is a normal equation for *H*. Since $\vec{v} = (-1,1)$ also lies on *H*, one of directions of the straight line *H* is $\vec{v} - \vec{u} = (-3,2)$.

Note that

$$\vec{a} \cdot (\vec{v} - \vec{u}) = (2,3) \cdot (-3,2) = 0,$$

so \vec{a} is orthogonal to $\vec{v} - \vec{u}$.