Please show that the vector a is orthogonal to the hyperplane $H=H(a, €)$; that is, if u and v are in H , then a is orthogonal to $\mathrm{u}-\mathrm{v}$.

Solution.

We present an example to illustrate this statement.
If the vector \vec{a} is orthogonal to the H, then \vec{a} is a normal vector for H. Let $\vec{a}=(2,3)$ and H is a straight line with equation

$$
2 x+3 y=1
$$

Find points on H. Suppose point $(x ; y)$ lies on H. We note that when $x=2, y=-1$, so $\vec{u}=$ $(2,-1)$ lies on H. Thus,

$$
(2,3) \cdot((x, y)-(2,-1))=0
$$

or, equivalently,

$$
(2,3) \cdot(x-2, y+1)=0
$$

is a normal equation for H. Since $\vec{v}=(-1,1)$ also lies on H, one of directions of the straight line H is $\vec{v}-\vec{u}=(-3,2)$.

Note that

$$
\vec{a} \cdot(\vec{v}-\vec{u})=(2,3) \cdot(-3,2)=0,
$$

so \vec{a} is orthogonal to $\vec{v}-\vec{u}$.

