Answer on question 36049 - Math - Calculus

Sand is falling into a cone at a rate of 10 cubic feet per minute. The diameter of the base of the cone is approximately 3 times the altitude. At what rate is the height of the pile changing when the pile is 15 feet high?

Answer:

The radius of the base is $h / 6$ feet. Then the cone volume is

$$
V_{0}=\frac{1}{3} \pi r^{2} h=\frac{\pi h^{3}}{108}=\frac{125 \pi}{4} .
$$

The volume of free space is decrease with a rate of 10 cubic feet per minute. So the free volume at time t is

$$
V_{t}=V_{0}-10 t=\frac{125 \pi}{4}-10 t
$$

On the other hand this volume equals $\frac{\pi h(t)^{3}}{108}$, where $h(t)$ is the height of free cone, and we get

$$
\frac{\pi h(t)^{3}}{108}=\frac{125 \pi}{4}-10 t
$$

Or

$$
h(t)=3 \sqrt[3]{\frac{125 \pi-40 t}{\pi}}
$$

the rate of decreasing this height is

$$
h^{\prime}(t)=-\frac{40}{\sqrt[3]{\pi(125 \pi-40 t)^{2}}}
$$

The rate of increasing the height of sand is

$$
\frac{40}{\sqrt[3]{\pi(125 \pi-40 t)^{2}}}
$$

Answer: $\frac{40}{\sqrt[3]{\pi(125 \pi-40 t)^{2}}}$.

