

Let W_1 and W_2 be subspaces of a vector space V and define $W_1 + W_2 := \{u+v : u \in W_1, v \in W_2\}$. Prove that $\text{span}(W_1 \cup W_2) = W_1 + W_2$.

Solution

Let W_1 and W_2 be subspaces of a vector space V and define $W_1 + W_2 := \{u+v : u \in W_1, v \in W_2\}$. In other words, $W_1 + W_2$ is the collection of all vectors you can get by adding an element of W_1 to an element of W_2 .

Prove that $\text{span}(W_1 \cup W_2) = W_1 + W_2$ (in other words $W_1 + W_2$ is the smallest subspace containing both W_1 and W_2).

To see $W_1 + W_2$ is a subspace, check closure under addition and under multiplication by scalars. Let $u + v$ and $\acute{u} + \acute{v}$ be any elements of $W_1 + W_2$, where $u, \acute{u} \in W_1$ and $v, \acute{v} \in W_2$, and let a be any scalar. Then, since W_1 and W_2 are closed under addition and under multiplication by scalars,

$$(u + v) + (\acute{u} + \acute{v}) = (u + \acute{u}) + (v + \acute{v}) \in W_1 + W_2,$$

$$a(u + v) = au + av \in W_1 + W_2.$$

Also, $W_1 \subseteq W_1 + W_2$, since every $u \in W_1$ can be written $u + 0 \in W_1 + W_2$. For the same reason, $W_2 \subseteq W_1 + W_2$. We have shown $W_1 + W_2$ is a subspace containing both W_1 and W_2 .

Clearly every element $u + v \in W_1 + W_2$ is in $\text{span}(W_1 + W_2)$ so $W_1 + W_2 \subseteq \text{span}(W_1 \cup W_2)$.

To show $W_1 + W_2 = \text{span}(W_1 \cup W_2)$, it remains only to show that $\text{span}(W_1 \cup W_2) \subseteq W_1 + W_2$. But this must be true, because we have shown $W_1 + W_2$ is a subspace containing $W_1 \cup W_2$, and $\text{span}(W_1 \cup W_2)$ is the smallest such subspace.

So we have shown that $\text{span}(W_1 \cup W_2) = W_1 + W_2$.