Use Farka's Lemma directly to prove that, if p^* is finite, then *PS* has a feasible solution.

Solution.

Farkas' Lemma: precisely one of the following is true:

- a. there is $x \ge 0$ such that Ax = b;
- b. there is y such that $A^T y \ge 0$ and $b^T y \le 0$.

So consider the system of inequalities given in block-matrix form by

$$\begin{bmatrix} -A^T & c \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} r \\ \alpha \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and

$$\begin{bmatrix} -b^T & p^* \end{bmatrix} \begin{bmatrix} r \\ \alpha \end{bmatrix} < 0$$

Here r is a column vector and α is a real number.

By Farkas' Lemma, there must be $\hat{x} \ge 0$ and $\beta \ge 0$ such that $A\hat{x} = b$ and $c^T\hat{x} = p^* - \beta \le p^*$. It follows that \hat{x} is optimal (feasible solution where the objective function reaches its maximum or minimum) for *PS* and $c^T\hat{x} = p^*$.