Use Farka's Lemma directly to prove that, if p^{*} is finite, then $P S$ has a feasible solution.

Solution.

Farkas' Lemma: precisely one of the following is true:
a. there is $x \geq 0$ such that $A x=b$;
b. there is y such that $A^{T} y \geq 0$ and $b^{T} y \leq 0$.

So consider the system of inequalities given in block-matrix form by

$$
\left[\begin{array}{cc}
-A^{T} & c \\
0^{T} & 1
\end{array}\right]\left[\begin{array}{l}
r \\
\alpha
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
-b^{T} & p^{*}
\end{array}\right]\left[\begin{array}{l}
r \\
\alpha
\end{array}\right]<0
$$

Here r is a column vector and α is a real number.
By Farkas' Lemma, there must be $\hat{x} \geq 0$ and $\beta \geq 0$ such that $A \hat{x}=b$ and $c^{T} \hat{x}=p^{*}-\beta \leq p^{*}$. It follows that \hat{x} is optimal (feasible solution where the objective function reaches its maximum or minimum) for $P S$ and $c^{T} \hat{x}=p^{*}$.

