

Find the area of triangle whose perimeter is 48 cm and length of altitudes from opposite vertex are 20 cm, 28 cm and 35 cm respectively.

Solution:

The formula of the area T of a triangle is:

$$T = \frac{1}{2} * a * h_a;$$

where a is the length of the base of the triangle, and h_a is the height of the triangle conducted to side a .

Also we can write this formula for every side of triangle:

$$T = \frac{1}{2} * b * h_b;$$

where b is the length of the base of the triangle, and h_b is the height of the triangle conducted to side b .

$$T = \frac{1}{2} * c * h_c;$$

where c is the length of the base of the triangle, and h_c is the height of the triangle conducted to side c .

As you understand we can equate all this equation and we will get

$$T = \frac{1}{2} * a * h_a = \frac{1}{2} * b * h_b = \frac{1}{2} * c * h_c$$

Then

$$a * h_a = b * h_b = c * h_c$$

The perimeter P of a triangle is:

$$P = a + b + c$$

In our case $h_a = 20$ cm, $h_b = 28$ cm, $h_c = 35$ cm and $P = 48$ cm;

Then

$$a + b + c = 48$$

$$20 * a = 28 * b = 35 * c$$

Now we are solving this problem

$$a = 35 * c / 20$$

$$b = 35 * c / 28$$

$$35 * c / 20 + 35 * c / 28 + c = 48$$

$$7 * c / 4 + 5 * c / 4 + c = 48$$

$$7*c + 5*c + 4*c = 192$$

$$16*c = 192$$

$$c = 12$$

Then of the area **T** of a triangle is:

$$T = \frac{1}{2} * 12 * 35 = 210$$

Answer: the area of the triangle is **210 cm²**