Question 35733

We are given $x + \frac{1}{x} = 2\cos\frac{\pi}{10}$ and need to find $x^5 + \frac{1}{x^5}$. Let us expand $(x + \frac{1}{x})^5 = \frac{1}{x^5} + \frac{5}{x^3} + \frac{10}{x} + 10x + 5x^3 + x^5$ and $5 \cdot (x + \frac{1}{x})^3 = \frac{5}{x^3} + 5x^3 + \frac{15}{x} + 15x$. From first expression, $\frac{1}{x^5} + x^5 = (x + \frac{1}{x})^5 - (\frac{5}{x^3} + \frac{10}{x} + 10x + 5x^3)$. The expression in the last brackets on the right might be rewritten as $\frac{5}{x^3} + \frac{10}{x} + 10x + 5x^3 = 5(x + \frac{1}{x})^3 - 5(\frac{1}{x} + x)$. Hence, knowing that $x + \frac{1}{x} = 2\cos\frac{\pi}{10}$, obtain: $\frac{1}{x^5} + x^5 = (x + \frac{1}{x})^5 - 5(x + \frac{1}{x})^3 + 5(\frac{1}{x} + x) = 32\cos^5\frac{\pi}{10} - 40\cos^3\frac{\pi}{10} + 10\cos\frac{\pi}{10}$.