Question 35733

We are given $\quad x+\frac{1}{x}=2 \cos \frac{\pi}{10}$ and need to find $x^{5}+\frac{1}{x^{5}}$.
Let us expand $\left(x+\frac{1}{x}\right)^{5}=\frac{1}{x^{5}}+\frac{5}{x^{3}}+\frac{10}{x}+10 x+5 x^{3}+x^{5}$ and $5 \cdot\left(x+\frac{1}{x}\right)^{3}=\frac{5}{x^{3}}+5 x^{3}+\frac{15}{x}+15 x$. From first expresion , $\frac{1}{x^{5}}+x^{5}=\left(x+\frac{1}{x}\right)^{5}-\left(\frac{5}{x^{3}}+\frac{10}{x}+10 x+5 x^{3}\right)$. The expression in the last brackets on the right might be rewritten as $\frac{5}{x^{3}}+\frac{10}{x}+10 x+5 x^{3}=5\left(x+\frac{1}{x}\right)^{3}-5\left(\frac{1}{x}+x\right)$. Hence, knowing that $x+\frac{1}{x}=2 \cos \frac{\pi}{10} \quad$, obtain:
$\frac{1}{x^{5}}+x^{5}=\left(x+\frac{1}{x}\right)^{5}-5\left(x+\frac{1}{x}\right)^{3}+5\left(\frac{1}{x}+x\right)=32 \cos ^{5} \frac{\pi}{10}-40 \cos ^{3} \frac{\pi}{10}+10 \cos \frac{\pi}{10}$.

