Of the Trapezium $A B C D, A B \| C D$. If $A B=5.2 \mathrm{~cm}, B C=3 \mathrm{~cm}, A D=3.4 \mathrm{~cm} \&$ the dist. between the parallel sides is 2.5 cm . Then construct the Trapezium.

Solution.

We know sides $A B=5.2 \mathrm{~cm}, B C=3 \mathrm{~cm}, A D$ and the distance between the parallel sides or the height $C H=D G$. We have
$A B>B C$ \& $A B>A D$
Then
$A B>C D$
We must find $C D$ for construction the Trapezium.
Consider the triangle $C H B$. By the Pythagorean theorem:
$B H=\sqrt{B C^{2}-C H^{2}}=\sqrt{3^{2}-2.5^{2}}=\sqrt{2.75}(\mathrm{~cm})$
Consider the triangle DGA. By the Pythagorean theorem:
$G A=\sqrt{D A^{2}-D G^{2}}=\sqrt{3.4^{2}-2.5^{2}}=\sqrt{5.31}(\mathrm{~cm})$
We have:
$A B=A G+G H+H B$
$C D=H G:$
$A G+C D+H B=A B$
$C D=A B-A G-H B=5.2-\sqrt{2.75}-\sqrt{5.31} \approx 1.2(\mathrm{~cm})$
Now we can construct the trapezium:
1.2

5.2

