As a balloon rises, its angle of elevation from a point A on level ground 140 m . from the point B directly under the balloon changes from 30 degrees to 60 degrees. How far does the balloon rise during this period?

Solution:

$\alpha_{1}=30^{\circ}$ - lower angle;
$\alpha_{2}=60^{\circ}-$ greater angle;
For the height at lower angle (right triangle ADC) :
$\tan \alpha_{1}=\frac{\mathrm{h}_{1}}{\mathrm{~d}}$
$\mathrm{h}_{1}=\mathrm{d} \cdot \tan \alpha_{1}$
For the height at greater angle (right triangle BDC) :
$\tan \alpha_{2}=\frac{\mathrm{h}_{2}}{\mathrm{~d}}$
$\mathrm{h}_{2}=\mathrm{d} \cdot \tan \alpha_{2}$
To find how much balloon was displaced, we need to subtract from the end position (height h_{2}) the starting position (height h_{1}):
$\Delta \mathrm{h}=\mathrm{h}_{2}-\mathrm{h}_{1}$
Substitute (2) and (1) in(3):

$$
\begin{aligned}
\Delta \mathrm{h}=\mathrm{h}_{2}-\mathrm{h}_{1} & =\mathrm{d} \cdot \tan \alpha_{2}-\mathrm{d} \cdot \tan \alpha_{1}=\mathrm{d}\left(\tan \alpha_{2}-\tan \alpha_{1}\right) \\
& =140 \mathrm{~m} \cdot\left(\tan 60^{\circ}-\tan 30^{\circ}\right)=161.7 \mathrm{~m}
\end{aligned}
$$

Answer: balloon rose during this time on a height of 161.7 m

