Question: Actual lengths of pregnancy terms are normally about a mean pregnancy length of about 38 to 39 weeks with a standard deviation of 15 days. About what percentage of births would be expected within 1 month of the mean pregnancy length?

Answer: Denote random variable describing the length of pregnancy term by $\mathrm{X} . \mathrm{M}$ is the mean value of $\mathrm{X}\left(\mathrm{M}\right.$ is about 38 to 39 weeks). $\sigma_{X}=15$ (days).
By the Chebyshev's inequality, $P(|X-M| \geq a) \leq \frac{\sigma_{X}^{2}}{a^{2}}$. And $P(|X-M|<a)>1-\frac{\sigma_{X}^{2}}{a^{2}}$.
Therefore, the probability of birth being within 30 days of the mean pregnancy length is

$$
P(|X-M|<30)>1-\frac{15^{2}}{30^{2}}=1-\frac{1}{4}=\frac{3}{4}=0.75
$$

Answer: 0.75.

