a)

By definition, normal cone for a set X at point x is defined in such a way:

$$
N_{X}(x)=\left\{z \mid \exists x_{k} \subset X,\left\{z_{k}\right\} \text { s.t. } z_{k} \in T_{X}\left(x_{k}\right)^{*}, x_{k} \rightarrow x, z_{K} \rightarrow z\right\}
$$

Here $T_{X}(x)$ is the tangent cone to the set X at point x . It is defined in such a way:

$$
T_{X}(x)=\{0\} \cup\left\{y \mid y \neq 0, \exists\left\{x_{k}\right\} \subset X \text { s.t. } x_{k} \neq x \text { and } x_{k} \rightarrow x, \frac{x_{k}-x}{\left\|x_{k}-x\right\|} \rightarrow \frac{y_{k}}{\|y\|}\right\}
$$

Without losing generality, let x be a point at the origin and circular region C lies in the upper half-plane. Since the tangent cone equals to
$T_{X}(x)=\{(x, y) \mid y>0\}$ the normal cone equals to

$$
N_{X}(x)=\{(x, y) \mid y=0\}
$$

(b)

In case C is rectangular region in R^{2}, x is point on the boundary, then as in (a)

$$
\begin{aligned}
T_{X}(x) & =\{(x, y) \mid y>0\} \\
N_{X}(x) & =\{(x, y) \mid y=0\}
\end{aligned}
$$

