Find all the functions f (from rational numbers to rational numbers) such that $f(x+y)+f(x-y)=2 f(x)+2 f(y)$, for all rationales x, y.

Solution.

Find all continuous $f: R \rightarrow R$ which satisfy

$$
f(x+y)+f(x-y)=2[f(x)+f(y)] \text { (1). }
$$

Fix $\delta>0$ and let $C=\int_{0}^{\delta} 2 f(y) d y$.
Then
$2 \delta f(x)+c=\int_{0}^{\delta} 2[f(x)+f(y)] d y=\int_{0}^{\delta}(f(x+y)+f(x-y) d y)=\int_{x}^{x+\delta} f(y) d y+$ $\int_{x-\delta}^{x} f(y) d y=\int_{x-\delta}^{x+\delta} f(y) d y$

Now since f is continuous, the last expression is a differentiable function of x and thus the first expression must also be differentiable; hence f is differentiable. By induction, f is infinitely differentiable.

Differentiating (1) first with respect to y, we arrive at:

$$
f^{\prime}(x+y)-f^{\prime}(x-y)=2 f^{\prime}(y) \text { (2). }
$$

Differentiating once more with respect to x, we have:
$f^{\prime \prime}(x+y)=f^{\prime \prime}(x-y)$,
so $f^{\prime \prime}$ is constant.

It follows that $f(x)=a x^{2}+b x+c$ are the only potential solutions.

Substituting $x=y=0$ in (1) and (2) implying $f(0)=f^{\prime}(0)=0$.

Hence
$f(x)=a x^{2}(a \in R)$

It is easy to check that all such f are indeed solutions.

Answer:

$f(x)=a x^{2}(a \in R)$

