Show that the length of the curve $y=\log \sec x$ between the points $x=0$ and x $=\pi / 3$ is $\log (2+\sqrt{ } 3)$

Solution:

The give curve is $y=\log \sec x$
Differentiating (1) w.r.t x, we get:

$$
\frac{d y}{d x}=\frac{1}{\sec x} \cdot \sec x \cdot \tan x=\tan x
$$

Now $\left(\frac{d S}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2}=1+\tan ^{2} x=\sec ^{2} x$
If the arc length \mathbf{S} of the given curve is measured from $x=0$ in the direction of x increasing, we have:

$$
\frac{d s}{d x}=\sec x ; d s=\sec x d x
$$

Therefore if S_{1} denotes the arc length from $x=0$ to $=$ $\frac{1}{3} \pi$, then

$$
\begin{aligned}
\int_{0}^{S_{1}} d s= & \int_{0}^{\frac{\pi}{3}} \sec x d x=[\log (\sec x+\tan x)]_{0}^{\frac{\pi}{3}} \\
& S_{1}=\left[\log \left(\sec \frac{\pi}{3}+\tan \frac{\pi}{3}\right)-\log 1\right]=\log (2+\sqrt{3})-0=\log (2+\sqrt{3})
\end{aligned}
$$

Answer: length of the curve $y=\log \sec x$ between the points $x=0$ and $x=\frac{\pi}{3}$ is $\log (2+\sqrt{3})$

