Consider the function $y=x^{2}-2 x-15$ and determine the following:
a. Whether the function has a minimum or a maximum
b. Minimum or a maximum value of the function
c. Crossing points of the graph in x -axis
d. The intercept

Solution:

a) $y=x^{2}-2 x-15$ or $f(x)=x^{2}-2 x-15$;

The first step we take the first derivative of a function $f(x)$ and equate it to zero.
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-2$ then $2 \mathrm{x}-2=0$; and $\mathrm{x}=1$;
$x=1$ is the critical value.
$f(x)=x^{2}-2 x-15 ; f(1)=1^{2}-2 \cdot 1-15=-16$

The extreme value is -16 .
$\mathrm{f}^{\prime \prime}(\mathrm{x})=2 ; \mathrm{f}^{\prime \prime}(\mathrm{x})$ evaluated at the critical value 1.
$f^{\prime \prime}(1)=2$ and $2>0$. It means that the critical value 1 determines a minimum.
b) In point $(1,-16)$ the function has a minimum; -16 is the minimum value of function $\mathrm{f}(\mathrm{x})$.
c) x - intercept is the point where a line crosses the x-axis. It crosses the x-axis when $\mathrm{y}=0$ or $\mathrm{f}(\mathrm{x})=0$;

$$
\begin{aligned}
& x^{2}-2 x-15=0 \\
& (x+3)(x-5)=0 \\
& x=-3 \text { or } x=5
\end{aligned}
$$

d) y - intercept is the point where a line crosses the y-axis. It crosses the $y-$ axis when $\mathrm{x}=0$;
$y=x^{2}-2 x-15$; when $x=0$; then $y=-15$;

