$f(x)=\sqrt{100+x^{2}}-x, x>0$
Having found the derivatives, we found critical points.
$f^{\prime}(x)=\frac{x}{\sqrt{100+x^{2}}}-1=\frac{x-\sqrt{100+x^{2}}}{\sqrt{100+x^{2}}}=0$
$x-\sqrt{100+x^{2}}=0$
$x=\sqrt{100+x^{2}}$
$x^{2}=100+x^{2}$
This equation has no solutions.
Hence, this function is strongly monotonous, because $x-\sqrt{100+x^{2}}<0$
This function is monotonous; consequently it has no extreme points on domain.
It is left only to check boundary points.
$f(0)=10$
$\lim _{x \rightarrow \infty} f(x)=x-x=0$
So, maximum value reached at $x=0$, minimum value reached at $x=i n f$

