Answer on question 33904 - Math - Number Theory

if a, b, c are any three integers such that $(a, c)=1$ and $(b, c)=1$, then show that $(a b, c)=1$.

Solution

Let the prime factorizations of a, b and c are

$$
a=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}, \quad b=q_{1}^{b_{1}} \ldots q_{n}^{b_{n}}, \quad c=r_{1}^{c_{1}} \ldots r_{m}^{a_{m}}
$$

From the condition $(\mathrm{a}, \mathrm{c})=1$ we get that for any $i=1 \ldots k, j=1 \ldots m, p_{i} \neq r_{j}$.
From the condition $(\mathrm{b}, \mathrm{c})=1$ we get that for any $i=1 \ldots m, j=1 \ldots n, r_{i} \neq q_{j}$.
Then the prime factorization of $a b$ is

$$
a b=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}} q_{1}^{b_{1}} \ldots q_{n}^{b_{n}}
$$

As any of this multipliers doesn't equal to any of the multipliers of c then $(a b, c)=1$.
QED.

