

Task.

Let a, b, c be integers such that $\gcd(a, b, c) = 1$. Find $\gcd(a + b, b + c, c)$.

Solution. Recall that $\gcd(a, b, c) = 1$ if and only if there exist integer numbers x, y, z such that

$$ax + by + cz = 1.$$

We claim that $\gcd(a + b, b + c, c) = 1$ as well. For this it suffices to find numbers x', y', z' such that

$$(a + b)x' + (b + c)y' + cz' = 1.$$

From identity

$$ax + by + cz = 1$$

we get

$$\begin{aligned} 1 &= ax + by + cz \\ &= ax + bx - bx + by + cz \\ &= (a + b)x + b(y - x) + cz \\ &= (a + b)x + b(y - x) + c(y - x) - c(y - x) + cz \\ &= (a + b)x + (b + c)(y - x) - c(y - x) + cz \\ &= (a + b) \cdot \underbrace{x}_{x'} + (b + c) \cdot \underbrace{(y - x)}_{y'} + c \cdot \underbrace{(z - y + x)}_{z'}. \end{aligned}$$

So we can put

$$x' = x, \quad y' = y - x, \quad z' = z - y + x.$$

Answer. $\gcd(a, b, c) = 1$