

Prove that $\gcd(n - 1, n + 1) = 1$ or 2 for each $n \geq 2$ and $\gcd(2n - 1, 2n + 1) = 1$ for each $n \geq 7$.

Solution.

1. Assume that $n - 1$ divides by d and $n + 1$ divides by d .

Then $(n + 1) - (n - 1)$ divides by d and $(n + 1) - (n - 1) = 2$ (the difference of the two).

The positive integer divisors of 2 is 1 or 2 , so $\gcd(n - 1, n + 1) = 1$ or 2 for each $n \geq 2$.

2. Assume that $2n - 1$ divides by d and $2n + 1$ divides by d .

Then $(2n + 1) - (2n - 1)$ divides by d and $(2n + 1) - (2n - 1) = 2$.

The positive integer divisors of 2 is 1 or 2 , but $n \geq 7$, so $\gcd(2n - 1, 2n + 1) = 1$ for each $n \geq 7$.