1. Let $\operatorname{tantan} x=2$. Which is $\cot x$?

Solution.

Firstly, let solve the equation

$$
\operatorname{tantan} x=2
$$

for $\tan x$.

As $2>0$, then we ought to use the following roots of the equation $\operatorname{tany}=a$:

$$
y=\operatorname{arctana}+\pi n, \quad n \in Z .
$$

So, one can receive:

$$
\tan x=\arctan 2+\pi n, \quad n \in Z .
$$

Now, we shall use the trigonometric identity

$$
\operatorname{tany} \cdot \cot y=1
$$

which observes for all $y \neq \frac{\pi k}{2}, \quad k \in Z$.
As $\arctan 2+\pi n$ does not equal to $\frac{\pi k}{2}$ for any integer n and k, then

$$
\cot x=\frac{1}{\tan x}=\frac{1}{\arctan 2+\pi n}, \quad n \in Z .
$$

Answer: $\cot x=\frac{1}{\arctan 2+\pi n}, \quad n \in Z$.

