

Task. Let $\varepsilon \geq 0$ and $\delta \geq 0$ and $a \in \mathbb{R}$. Show that $V_\varepsilon(a) \cap V_\delta(a)$ and $V_\varepsilon(a) \cup V_\delta(a)$ are γ neighborhoods of a for appropriate values of γ .

Solution. Recall that by definition of topology in \mathbb{R} a neighbourhood $V_t(a)$ is the interval $(a - t, a + t)$ for each $t > 0$, so it consists of all $x \in \mathbb{R}$ such that

$$a - t < x < a + t$$

which is the same as

$$-t < x - a < t.$$

In particular,

$$V_\varepsilon(a) = (a - \varepsilon, a + \varepsilon) \quad V_\delta(a) = (a - \delta, a + \delta).$$

1) First we will show that

$$V_\varepsilon(a) \cap V_\delta(a) = V_{\min\{\varepsilon, \delta\}}(a).$$

Indeed, the intersection

$$V_\varepsilon(a) \cap V_\delta(a)$$

consists of all $x \in \mathbb{R}$ for which both of the following pairs of inequalities hold:

$$-\varepsilon < x - a < \varepsilon \quad \text{and} \quad -\delta < x - a < \delta.$$

Notice that

$$-\varepsilon < x - a \quad \text{and} \quad -\delta < x - a$$

if and only if

$$-\min\{\varepsilon, \delta\} < x - a.$$

Similarly,

$$x - a < \varepsilon \quad \text{and} \quad x - a < \delta$$

if and only if

$$x - a < \min\{\varepsilon, \delta\}.$$

In other words,

$$V_\varepsilon(a) \cap V_\delta(a)$$

consists of all $x \in \mathbb{R}$ for which

$$-\min\{\varepsilon, \delta\} < x - a < \min\{\varepsilon, \delta\},$$

and so

$$V_\varepsilon(a) \cap V_\delta(a) = V_{\min\{\varepsilon, \delta\}}(a).$$

2) Now we will prove that

$$V_\varepsilon(a) \cup V_\delta(a) = V_{\max\{\varepsilon, \delta\}}(a).$$

Indeed, the union

$$V_\varepsilon(a) \cup V_\delta(a)$$

consists of all $x \in \mathbb{R}$ for which at least one of following pairs of inequalities hold:

$$-\varepsilon < x - a < \varepsilon \quad \text{and} \quad -\delta < x - a < \delta.$$

Notice that at least one the following inequalities hold

$$-\varepsilon < x - a \quad \text{or} \quad -\delta < x - a$$

if and only if

$$-\max\{\varepsilon, \delta\} < x - a.$$

Similarly, at least one the following inequalities hold

$$x - a < \varepsilon \quad \text{or} \quad x - a < \delta$$

if anf only if

$$x - a < \max\{\varepsilon, \delta\}.$$

In other words,

$$V_\varepsilon(a) \cap V_\delta(a)$$

consists of all $x \in \mathbb{R}$ for which

$$-\max\{\varepsilon, \delta\} < x - a < \max\{\varepsilon, \delta\},$$

and so

$$V_\varepsilon(a) \cap V_\delta(a) = V_{\max\{\varepsilon, \delta\}}(a).$$

Answer.

$$V_\varepsilon(a) \cap V_\delta(a) = V_{\min\{\varepsilon, \delta\}}(a), \quad V_\varepsilon(a) \cap V_\delta(a) = V_{\max\{\varepsilon, \delta\}}(a).$$