Task:

Find the nth term of each arithmetic progression.
$a_{1}=3 \quad d=7 \quad n=11$

Solution:

In mathematics, an arithmetic progression is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence $5,7,9$, $11,13,15 \ldots$ is an arithmetic progression with common difference of 2.

If the initial term of an arithmetic progression is a_{1} and the common difference of successive members is d, then the nth term of the sequence $\left(a_{n}\right)$ is given by: $a_{n}=a_{1}+(n-1) d$.

In our case, $a_{n}=a_{11}=3+(11-1) \cdot 7=3+10 \cdot 7=3+70=73$.
Answer:
The nth term of each arithmetic progression is $a_{11}=73$.

