Graph the Given Function and its inverse. $f(x)$
2. $y=x$ squared minus $6 x+9$

Solution:

Alternative form of the equation:

$$
x^{2}-6 x+9=(x-3)^{2}
$$

From the equation we can see that the curve crosses the x-axis at one point $(y=0)$:

$$
x=3 ; y=0
$$

X-coordinate of the vertex of the parabola:

$$
\begin{gathered}
x_{v e r}=-\frac{b}{2 a}=\frac{6}{2}=3 \\
y_{v e r}=3^{2}-6 * 3+9=0
\end{gathered}
$$

Now we can build a graph - standard parabola with vertex in point $(3,0)$

We can simply rewrite the equation as:

$$
\begin{gathered}
y=x^{2}-6 x+9 \\
y=(3-x)^{2} \\
\sqrt{y}=3-x
\end{gathered}
$$

Inverse function (change the X to Y and Y to $\mathrm{X}, x \rightarrow y, y \rightarrow x$):

$$
\begin{aligned}
& \sqrt{x}=3-y \\
& y=3-\sqrt{x}
\end{aligned}
$$

when we take the square root, we ignored the sign, which means the inverse function is symmetric about the line $\mathrm{y}=3$:

$$
y=3 \pm \sqrt{x}
$$

Another way to graph an inverse function - we need just to reflect the parabola about the line $y=x$, so in this way we change the X and Y-sites:

