Denote by ξ random variable that corresponds to the scores of high school seniors taking the ACT college entrance. We know that ξ has roughly normal distribution with mean equal to19.6 and standard deviation of 3.8. Thus,

$$
\xi \sim N(19.6,3.8)
$$

We need to find probability that a single student chosen at random is taking the test with score 22 or higher.

$$
P(\xi \geq 22)
$$

Using properties of normal distribution we have:

$$
P(\xi \geq 22)=1-P(\xi<22)=1-\Phi\left(\frac{22-19.6}{3.8}\right)=0.2638
$$

Thus this probability equals 0.2638 .
If we look for probability of scoring 23 or higher then

$$
P(\xi \geq 23)<\{\text { using monotonicity of probability }\}<P(\xi \geq 22)
$$

Thus, in this case probability decreases.

