Solution.

Let bearing required is from base of the tower to point B. Let T is a top of the tower.

At first consider the triangle made by points A, B and T with $A=45^{\circ}, B=30^{\circ}$ and $T=105^{\circ}$.
Then apply the law of sines to calculate b (distance of T to point A), also note that the distance from A to B is 100 meters:

$$
\begin{aligned}
& \frac{b}{\sin 30^{\circ}}=\frac{100}{\sin 105^{\circ}} \\
b= & \frac{100 \sin 30^{\circ}}{\sin 105^{\circ}} \approx 51.76 \mathrm{~m}
\end{aligned}
$$

Then consider the flat triangle $A O B$ where O is the base of the tower. We know that the length of $A O$ is the height of the tower because triangle $A O T$ is an isosceles right triangle with two 45° angles and one 90° angle and b is its hypotenuse, so

$$
\begin{gathered}
51.76^{2}=2 h^{2} \\
2679.1=2 h^{2} \\
h^{2}=1339.55 \mathrm{~m}^{2} \\
h=\sqrt{1339.55} \approx 36.6 \mathrm{~m}
\end{gathered}
$$

In right triangle $A O B$ we have:

$$
\tan \angle O=\frac{100}{36.6}=2.7 \Rightarrow \angle O=70^{\circ}
$$

Due south bearing is 180° so $180^{\circ}-70^{\circ}=110^{\circ}$ bearing to B.
Answer: 110°.

