## 33410:

Task. Hi Can any expert help by defining Jacobian of a matrix and making Jacobian of the following equations.
$\mathrm{P}=\mathrm{c}(\mathrm{u}+\mathrm{g}+\mathrm{d}) /\left(\mathrm{b}^{\wedge} 2+(\mathrm{u}+\mathrm{d})(\mathrm{u}+\mathrm{g}+\mathrm{d})\right)$
$\& \mathrm{gt} ; \mathrm{L}=(\mathrm{b} / \mathrm{u}+\mathrm{g}+\mathrm{d})^{\wedge} 2 . \mathrm{P}$
$\& \mathrm{gt} ; \mathrm{S}=(\mathrm{g} /(\mathrm{j}+\mathrm{u}+\mathrm{d}))[\mathrm{b} /(\mathrm{u}+\mathrm{g}+\mathrm{d})]^{\wedge} 2 . \mathrm{P}$
\> $Q=(g j /(u+d)(j+u+d))\left[(b /(u+g+d))^{\wedge} 2\right] P$
the Author had found it to be $\mathrm{J}(\mathrm{P}, \mathrm{L}, \mathrm{S}, \mathrm{Q})=\left(\begin{array}{lll}-\mathrm{a} & -\mathrm{b} & 0\end{array}\right)$
(0 g-d 0)
(0 0 j -e) Where
$a=\left(2(u+d)(u+g+d)+b^{\wedge} 2\right) / 2(u+g+d)$
$\mathrm{b}=(\mathrm{u}+\mathrm{g}+\mathrm{d}) / 2$
$\mathrm{c}=\mathrm{b}^{\wedge} 2 / 2(\mathrm{u}+\mathrm{g}+\mathrm{d})$
$\mathrm{d}=\mathrm{u}+\mathrm{j}+\mathrm{d}$
$\mathrm{e}=(\mathrm{d}+\mathrm{u})$
But it is difficult for me to understand it.Please give directions towards the solution.

## Solution.

Suppose functions $P, L, S, Q$ are the functions of arguments $u, g, d, j$. Find the partial derivative $P_{u}=\frac{\partial P}{\partial u}$ of function $P$ with respect to $u$ (differentiate $P$ with respect to $u$ while arguments $g, d, j$ are considered to be constant). Find other partial derivatives $P_{g}=\frac{\partial P}{\partial g}, P_{d}, P_{j}, L_{u}, L_{g}, L_{d}, L_{j}, S_{u}, S_{g}, S_{d}, S_{j}, Q_{u}, Q_{g}, Q_{d}, Q_{j}$. Compose matrix
$\left.\begin{array}{cccc}\left(P_{u}\right. & P_{g} & P_{d} & P_{j} \\ L_{u} & L_{g} & L_{d} & L_{j} \\ S_{u} & S_{g} & S_{d} & S_{j} \\ Q_{u} & Q_{g} & Q_{d} & Q_{j}\end{array}\right)$
and calculate its determinant, which is called Jacobian.

