IQ score due to the problem is normally distributed. Let's denote by ξ random variable that corresponds to IQ score. Mean of this distribution is $\mu=100$ and standard deviation $\sigma=15$. Thus

$$
\xi \sim N(100,15)
$$

To find point separating the bottom 3\% score from the top 97% let's find quantile of normal distribution corresponding to 0.03 :

$$
q_{1-0.03}=-1.88
$$

Using properties of normal distribution we have that required score equals to

$$
\mu+q_{1-0.03} \cdot \sigma=100-1.88 \cdot 15=71.8
$$

ANSWER: 71.8

