

33278:**Task.**

a) what is the largest interval (a, b) where the Power series $\sum_{n=1}^{\infty} (x-5)^n / (2^{2n} \sqrt{n+1})$ converges absolutely? [use the Ratio Test]

b) what is the radius of convergence of this Power series $\sum_{n=1}^{\infty} (x-5)^n / (2^{2n} \sqrt{n+1})$?

c) Does the series converge (conditionally) at the endpoints of the interval?

Solution. Consider the power series

$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{2^{2n} \sqrt{n+1}}. \quad (3)$$

$$\text{where } u_n = \frac{(x-5)^n}{2^{2n} \sqrt{n+1}}$$

To find the largest interval (a, b) where the power series (3) converges absolutely we use the following ratio test:

$$\lim_{n \rightarrow \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \rightarrow \infty} \left| \frac{(x-5)^{n+1} 2^{2n} \sqrt{n+1}}{2^{2n+2} (x-5)^n \sqrt{n+2}} \right| = \frac{|x-5|}{4} < 1. \quad (4)$$

Solving inequality at (4) we get $|x - 5| < 4$ which is equivalent to $-4 < x - 5 < 4$ and finally $1 < x < 9$. Thus $(a, b) = (1, 9)$, the radius of convergence of this power series is $R = 4$.

Check whether the series converges (conditionally) at the endpoints of the interval.

At $x = 1$: the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ is conditionally convergent at this endpoint by Leibniz theorem (all terms $\frac{1}{\sqrt{n+1}}$ decrease, $\lim_{n \rightarrow \infty} \frac{1}{\sqrt{n+1}} = 0$), is not absolutely convergent because the series

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}} \quad (5)$$

is divergent (apply a generalization of the harmonic series).

At $x = 9$: we come to conclusion that the series is (5), divergent.

The power series (3) converges conditionally at the endpoint $x = 1$.

Answer :

a)interval (1,9);

b)4 ;

c)the series converge (conditionally) at the endpoint $x=1$ and diverge at the endpoint $x=9$.