Use power series to compute $\sin (26.132742)$. Show and explain your work and give an estimate of the error. [26.132742 is a number ... not in degrees, if you feel more comfortable you can read it as 26.132742 radians.]

Definition of the sine:

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

26.132742 radians $=8 \pi+1$, therefore, $\sin (26.132742)=\sin (8 \pi+1)=$ $\sin (1)$

$$
\sin 1=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}
$$

For example, if $n_{\max }=4$:

$$
\begin{aligned}
\sin 1=\sum_{n=0}^{4} & \frac{(-1)^{n}}{(2 n+1)!}=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\frac{1}{9!}+O\left(\frac{1}{11!}\right)=\frac{305353}{362880} \\
& =0.84147101
\end{aligned}
$$

An estimate of the error is $O\left(\frac{1}{11!}\right)=\frac{1}{11!}=2.5 \times 10^{-8}$
So: $\sin (26.132742)=0.84147101$

