32980:

Task.

Let
$\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$
be a linear transformation, where U and V are of the same finite dimension. Then the following but one statements are equivalent

T is a homomorphism
T is an isomorphism
T is $1-1$
T is onto
Solution.

Isomorphism is a one-to-one relation onto the map between two sets, which preserves the relations existing between elements in its domain. Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear transformation, where U and V are of the same finite dimension. Then T is an isomorphism. Thus, the statement " T is a homomorphism" is not true.

Answer. "T is a homomorphism" is the only non-equivalent statement.

