

### Answer on Question # 32644 – Math – Geometry

ABCD is a parallelogram and E is the midpoint of BC. DE and AB are produced to meet at F. Show that  $AF=2AB$ .

**Solution.**



If we prove that triangles DEC and BFE are equal we show that  $AF=2AB$ .

So,

- 1) As E is the midpoint of BC we have that  $BE=EC$ ;
- 2)  $\text{Angle}(DEC)=\text{angle}(BEF)$ , as vertical angles;
- 3)  $\text{Angle}(C)=\text{angle}(EBF)$ , as in parallelogram  $\text{angle}(A)=\text{angle}(C)$  and  $\text{angle}(180-A)=\text{angle}(B)$ .

From 1)-3) we make a conclusion that  $\text{triangle}(DEC)=\text{triangle}(BFE)$ . And  $BF=DC$ . As ABCD is a parallelogram we obtain that  $BF=AB$ .

Thus,  $AF=2AB$ .