Answer on Question \# 32644 - Math - Geometry

$A B C D$ is a parallelogram and e is the midpoint of $B C$. $D E$ and $A B$ are produced to meet at F. Show that $A F=2 A B$.

Solution.

If we prove that triangles $D E C$ and $B F E$ are equal we show that $A F=2 A B$.
So,

1) As E is the midpoint of $B C$ we have that $B E=E C$;
2) Angle(DEC)=angle(BEF), as vertical angles;
3) Angle(C)=angle(EBF), as in parallelogram angle(A)=angle(C) and angle(180-A)=angle(B).

From 1)-3) we make a conclusion that triangle(DEC)=triangle(BFE). And BF=DC. As ABCD is a parallelogram we obtain that $\mathrm{BF}=\mathrm{AB}$.

Thus, $A F=2 A B$.

