We've noticed some mistakes, so it was necessary to make some changes.
The Royal Fruit Company produces two types of fruit drinks. The first type is $\boldsymbol{x} \%$ pure fruit juice, and the second type is $\boldsymbol{y} \%$ pure fruit juice. The company is attempting to produce a fruit drink that contains $\boldsymbol{z} \%$ pure fruit juice. How many pints of each of the two existing types of drink must be used to make 100 pints of a mixture that is $\boldsymbol{z} \%$ pure fruit juice?

Solution.

Let $a=$ pints of $x \%$ fruit juice to be mixed
Then $100-a=$ pints of $y \%$ fruit juice to be mixed
We have an equation:
$a \cdot x \%+(100-a) \cdot y \%=100 \cdot z \%$

Let's find a :
$a \cdot 0.01 x+(100-a) \cdot 0.01 y=z$
$0.01 x \cdot a+y-0.01 y * a=z$
$a \cdot(0.01 x-0.01 y)=z-y$
$a=\frac{z-y}{0.01 x-0.01 y}=\frac{100(z-y)}{x-y}$
Then
$100-a=100 \cdot\left(1-\frac{z-y}{x-y}\right)$

Answer:

$\frac{100(z-y)}{x-y}$ pints of $\mathrm{x} \%$ fruit juice must be used;
$100 \cdot\left(1-\frac{z-y}{x-y}\right)$ pints of $y \%$ fruit juice must be used.

If we know x, y, z, we can find the answer in numbers.

