Answer on Question\#32300 - Math - Algebra

Zeros of the polynomial $x^{\wedge} 2-p x-q=0$ are 3 and 2 . Find p and q.

Solution.

We have quadratic equation:

$$
\begin{equation*}
x^{2}-p x-q=0 \tag{1}
\end{equation*}
$$

Discriminant:

$$
D=p^{2}+4 q>0
$$

Because we have two real roots.
These two distinct roots we obtain from

$$
\begin{equation*}
x_{1}=\frac{p+\sqrt{D}}{2} \text { and } x_{2}=\frac{p-\sqrt{D}}{2} . \tag{2}
\end{equation*}
$$

Substitute 2 and 3 in (2) as the roots of equation (1).

$$
\begin{gathered}
3=\frac{p+\sqrt{D}}{2}, 2=\frac{p-\sqrt{D}}{2} \rightarrow \\
6-p=\sqrt{D} \text { and } 4-p=-\sqrt{D} \rightarrow
\end{gathered}
$$

We obtain

$$
6-p=-(4-p) \rightarrow p=5
$$

From this we have that $\sqrt{D}=1 \rightarrow D=1 \rightarrow 25+4 q=1 \rightarrow q=-\frac{24}{4}=-6$.
Answer.
$p=5, q=-6$.

