Task. A discrete random variable X has possible values $x_{i}=i^{2}, i=1,2,3,4,5$, which occur with probabilities $0.4,0.25,0.15,0.1$, and 0.1 respectively.
a) write the probability density $f_{X}(t)$ and probability distribution $F_{X}(t)$ functions for X random variable
b) find mean value $E[X]$

Solution. The distribution of probabilities of values of X is given in the following table:

x_{i}	1	4	9	16	25
$p\left(x_{i}\right)$	0.4	0.25	0.15	0.1	0.1

Since X is discrete, its probability density function is the sum of delta-functions:

$$
f_{X}(t)=0.4 \delta(t-1)+0.25 \delta(t-4)+0.15 \delta(t-9)+0.1 \delta(t-16)+0.1 \delta(t-25)
$$

and its probability distrubution $F_{x}(t)$ is given by the formula:

$$
F_{X}(t)= \begin{cases}0, & t<1 \\ 0.4, & 1 \leq t<4 \\ 0.4+0.25=0.65, & 4 \leq t<9 \\ 0.65+0.15=0.8, & 9 \leq t<16 \\ 0.8+0.1=0.9, & 16 \leq t<25 \\ 1, & t \leq 25\end{cases}
$$

Thus

$$
F_{X}(t)= \begin{cases}0, & t<1 \\ 0.4, & 1 \leq t<4 \\ 0.65, & 4 \leq t<9 \\ 0.8, & 9 \leq t<16 \\ 0.9, & 16 \leq t<25 \\ 1, & t \leq 25\end{cases}
$$

The mean value $E[X]$ is defined by the formula:

$$
\begin{aligned}
E[X]=\sum_{i=1}^{5} x_{i} p\left(x_{i}\right) & =1 * 0.4+4 * 0.25+9 * 0.15+16 * 0.1+25 * 0.1 \\
& =0.4+1+1.35+1.6+2.5=6.85
\end{aligned}
$$

