

Solve a system of equations:

$$\begin{cases} 3(2u+v) = 7uv \quad (1) \\ 3(u+3v) = 11uv \quad (2) \end{cases}$$

Solution.

Assume that $uv = 0$. Then we have the following system of equations:

$$\begin{cases} 3(2u+v) = 0 \quad (1) \\ 3(u+3v) = 0 \quad (2) \end{cases} \Leftrightarrow \begin{cases} 2u+v = 0 \quad (1) \\ u+3v = 0 \quad (2) \end{cases} \Leftrightarrow \begin{cases} v = -2u \quad (1) \\ -5u = 0 \quad (2) \end{cases} \Leftrightarrow \begin{cases} u = 0 \quad (1) \\ v = 0 \quad (2) \end{cases}$$

If $u = 0$ and $v = 0$ then $uv = 0$, so $(0, 0)$ is a solution of the system.

Assume that $uv \neq 0$, then $u \neq 0$ and $v \neq 0$ and we can divide the first equation of the original system by the second equation:

$$\begin{cases} 3(2u+v) = 7uv \quad (1) \\ 3(u+3v) = 11uv \quad (2) \end{cases} \Leftrightarrow \begin{cases} \frac{2u+v}{u+3v} = \frac{7}{11} \quad (1) \\ 3(u+3v) = 11uv \quad (2) \end{cases} \Leftrightarrow \begin{cases} 22u+11v = 7u+21v \quad (1) \\ 3(u+3v) = 11uv \quad (2) \end{cases} \Leftrightarrow \begin{cases} 15u = 10v \quad (1) \\ 3(u+3v) = 11uv \quad (2) \end{cases} \Leftrightarrow$$

$$\begin{cases} u = \frac{2}{3}v \quad (1) \\ 3\left(\frac{2}{3}v+3v\right) = 11 \cdot \frac{2}{3}v^2 \quad (2) \end{cases} \Leftrightarrow \begin{cases} u = \frac{2}{3}v \quad (1) \\ 11v = 11 \cdot \frac{2}{3}v^2 \quad (2) \end{cases} \Leftrightarrow \begin{cases} u = 1 \quad (1) \\ v = \frac{3}{2} \quad (2) \end{cases}$$

If $u = 1$ and $v = \frac{3}{2}$ then $uv \neq 0$, so $\left(1, \frac{3}{2}\right)$ is the second solution of the original system.

Answer: $(0,0)$; $\left(1, \frac{3}{2}\right)$.