$$
\cot (4 \mathrm{~A})=\frac{1}{\cot (4 \mathrm{~A})}
$$

First, let's multiply this equation by $\cot (4 \mathrm{~A}), \cot (4 \mathrm{~A})$ cannot be zero because it's in the denominator. Thus, we obtain:

$$
\cot ^{2} 4 \mathrm{~A}=1, \quad \cot 4 \mathrm{~A} \neq 0
$$

Therefore

$$
\cot 4 \mathrm{~A}= \pm 1
$$

From that, using well-known geometric formulae, we obtain that

$$
4 A=\frac{\pi}{4}+\frac{\pi k}{2}, \quad k \in Z
$$

or

$$
A=\frac{\pi}{16}+\frac{\pi k}{8}, \quad k \in Z
$$

