Task. If $\sin d=0.25$ and $\sin k=0.75$, which of the following is the value of $\cos d+\cos k$?
A. 1.68
B. 1.59
C. 1.61
D. 1.63

Solution. Since

$$
\sin ^{2} x+\cos ^{2} x=1
$$

for all x, we have that

$$
\cos x= \pm \sqrt{1-\sin ^{2} x}
$$

Since all variants A.-D. are greater 1, assume that $\cos d>0$ and $\cos k>0$. Then

$$
\cos d=\sqrt{1-\sin ^{2} d}=\sqrt{1-0.25^{2}}=\sqrt{0.9375} \approx 0.96825
$$

and

$$
\cos k=\sqrt{1-\sin ^{2} k}=\sqrt{1-0.75^{2}}=\sqrt{0.4375} \approx 0.66144
$$

Therefore

$$
\cos d+\cos k \approx 0.96825+0.66144=1.6297 \approx 1.63
$$

Answer. D) $\cos d+\cos k \approx 1.63$.

