

Question 31562

$$\vec{u}(1;3;-2), \vec{v}(4;-2;-4) ;$$

Vector $(a_1; a_2; a_3)$ is multiplied by scalar λ by following rule: $\lambda(a_1; a_2; a_3) = (\lambda a_1; \lambda a_2; \lambda a_3)$.

Vectors are added(or subtracted) by components: $(a_1; a_2; a_3) + (b_1; b_2; b_3) = (a_1 + b_1; a_2 + b_2; a_3 + b_3)$.

Using these rules, obtain $2\vec{u} + \vec{v} = (6; 4; -8)$ and $\vec{u} - 2\vec{v} = (-7; 7; 6)$.

The dot product of two vectors $\vec{a}(a_1; a_2; a_3)$ and $\vec{b}(b_1; b_2; b_3)$ is $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Hence, $(2\vec{u} + \vec{v}) \cdot (\vec{u} - 2\vec{v}) = -7 \cdot 6 + 4 \cdot 7 + 6 \cdot (-8) = -62$.