Task. Three consecutive vertices of a parallelogram are points $A=(2,4), B=(0,0)$, and $C=(6,0)$. Find the fourth vertex D.

Solution. Recall that the intersection point M of the diagonals $A C$ and $B D$ of the parallelogram is the middle point of these intervals.

Thus if $A=\left(x_{1}, y_{1}\right)$ and $C=\left(x_{2}, y_{2}\right)$, then the coordinates of the middle point $M=(\bar{x}, \bar{y})$ of $A C$ can be computed by the formula:

$$
\bar{x}=\frac{x_{1}+x_{2}}{2}, \quad \bar{y}=\frac{y_{1}+y_{2}}{2} .
$$

In our case $A=(2,4)$ and $C=(6,0)$, whence

$$
\bar{x}=\frac{2+6}{2}=4, \quad \bar{y}=\frac{4+0}{2}=2,
$$

so

$$
M=(4,2) .
$$

Let $D=(x, y)$. Since $M=(4,2)$ is the middle point of $B D$ and $B=(0,0)$ we have that

$$
4=\frac{0+x}{2}, \quad 2=\frac{0+y}{2},
$$

whence

$$
x=2 * 4=8, \quad y=2 * 2=4 .
$$

Thus $D=(8,4)$.
Answer. $D=(8,4)$.

