Prove:
$\frac{\sin A}{1+\cos A}=\frac{1-\cos A}{\sin A}$

Proof:
The Multiplication Properties of Equality:
If you multiply two equality elements by the same element, then the resulting elements are equivalent.
Multiplying both sides by $\frac{\sin A}{1-\cos A}$
LHS: $\frac{\sin A}{1+\cos A} \cdot \frac{\sin A}{1-\cos A}=\frac{\sin ^{2} A}{1-\cos ^{2} A}$
The Pythagorean Identities:
$\sin ^{2} A+\cos ^{2} A=1$
So $1-\cos ^{2} A=1$ and so
LHS: $\frac{\sin ^{2} A}{1-\cos ^{2} A}=\frac{\sin ^{2} A}{\sin ^{2} A}=1$
RHS: $\frac{1-\cos A}{\sin A} \times \frac{\sin A}{1-\cos A}=1$
Hence
LHS $=$ RHS

