

Task. Given that:

$$r_1 = 6i - 8j + 2k, \quad r_2 = 4i + 5j + 7k, \quad r_3 = -2i + j + 6k$$

Find (r_1, r_2) .

Solution. The scalar product (r_1, r_2) of vectors

$$r_1 = a_1i + a_2j + a_3k, \quad r_2 = b_1i + b_2j + b_3k,$$

can be computed by the following formula:

$$(r_1, r_2) = a_1b_1 + a_2b_2 + a_3b_3.$$

In our case

$$r_1 = 6i - 8j + 2k, \quad r_2 = 4i + 5j + 7k$$

and so

$$\begin{aligned} a_1 &= 6, & a_2 &= -8, & a_3 &= 2 \\ b_1 &= 4, & b_2 &= 5, & b_3 &= 7 \end{aligned}$$

Substituting values we get

$$(r_1, r_2) = a_1b_1 + a_2b_2 + a_3b_3 = 6 * 4 + (-8) * 5 + 2 * 7 = 24 - 40 + 14 = -2.$$

Answer. $(r_1, r_2) = -2$.