Question \#31383

a circle has equation $(x-2)^{\wedge} 2+(y+3)^{\wedge "}=25$
a. find the centre and radius of the cirle
b.verify that the point $A(6,-6)$ is on the circle
c. if $[A B]$ is a diameter of the circle, find point B.
d. Find the equation of the tangent to the circle A

Solution.

a. The circle with a center $\left(x_{0}, y_{0}\right)$ and radius R has an equation $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=$ R^{2}.
Then the center of the given circle is $O(2,-3)$ and the radius $\mathrm{R}=\sqrt{25}=5$.
Answer. (2,-3), R=5.
b. A point $\mathrm{P}(x, y)$ is on the circle if its coordinates satisfy the equation of this circle. Then $(6-2)^{2}+(-6+3)^{2}=4^{2}+(-3)^{2}=16+9=25$, which means that $A(6,-6)$ is on the circle.
c. Let $B\left(x_{0}, y_{0}\right)$. Then B is on the circle, which means that $\left(x_{0}-2\right)^{2}+\left(y_{0}+3\right)^{2}=$ 25 and $A B=\sqrt{\left(6-x_{0}\right)^{2}+\left(-6-y_{0}\right)^{2}}=2 R=10$. Thus, we obtain

$$
\left\{\begin{array}{c}
\left(x_{0}-2\right)^{2}+\left(y_{0}+3\right)^{2}=25 \\
\left(6-x_{0}\right)^{2}+\left(-6-y_{0}\right)^{2}=100
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{c}
x_{0}^{2}-4 x_{0}+4+y_{0}^{2}+6 y_{0}+9=25 \\
36-12 x_{0}+x_{0}^{2}+36+12 y_{0}+y_{0}^{2}=100
\end{array}\right.
$$

Subtracting the equalities, we obtain $x_{0}=\frac{3 y_{0}-8}{4}$ and $25 y_{0}^{2}=0$. Then $y_{0}=0, x_{0}=-2$.

Answer. (-2,0).
d. A tangent line to the circle at a point A is perpendicular to the line, which contains the center of the circle and A.
The equation of the line through the points A and O :

$$
\frac{x-6}{4}=\frac{y+6}{-3}
$$

and so

$$
3 x+4 y+6=0
$$

It follows that a tangent line is parallel to the vector $(3,4)$ and so $\frac{x-6}{3}=\frac{y+6}{4}$ The tangent line $4 x-3 y-42=0$.

Answer. $4 x-3 y-42=0$.

