Task. If f is a differentiable function such that $f(3)=8$ and $f^{\prime}(3)=5$, which of the following statements could be false?
a) $\lim _{x \rightarrow 3} f(x)=8$
b) $\lim _{x \rightarrow 3} \frac{f(x)-8}{x-3}=5$
c) $\lim _{h \rightarrow 0} \frac{f(3+h)-8}{h}=5$
d) $\lim _{x \rightarrow 3+} f(x)=\lim _{x \rightarrow 3-} f(x)$
e) $\lim _{x \rightarrow 3} f^{\prime}(x)=5$

Solution. Notice that f is differentiable at $x=3$, it is also continuous at this point. This means that

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3+} f(x)=\lim _{x \rightarrow 3-} f(x)=f(3)=8,
$$

whence a) and d) hold.
Moreover, differentiability of f at $x=3$ means that

$$
f^{\prime}(3)=\lim _{x \rightarrow 3} \frac{f(x)-8}{x-3}=5,
$$

whence b) also holds.
In particular, the later limit hold if we approach x from the left, i.e.

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-8}{h}=5
$$

and thus c) holds.
On the other hand, statement e)

$$
\lim _{x \rightarrow 3} f^{\prime}(x)=f^{\prime}(3)=5
$$

means that f^{\prime} is continuous at $x=3$. However, the differentiability of f at $x=3$ does not imply that f^{\prime} is not continuous at $x=3$. Therefore statement e) could be false.

